application conditions and graph constraints
Graph constraints and application conditions are restrictions set on the host graph and on the applicability of a production, respectively. Conceptually, what we try to address is the especification of properties. For example, is a (host) graph three-colorable?, or, is every node of type 1 linked to one of type 2? This topic is important both from the theoretical and the practical points of view. It si addressed in Chap. 7 of the MGG book in full detail.
If we try to describe properties of a single graph, they are known as graph constraints; if there is a production involved they are known as application conditions. Application conditions can be set on the left hand side of the production (precondition) or on the right hand side (postcondition), or on both.
The proposal in MGG generalizes any previous approach to the topic. In essence, a graph constraint consists of a diagram (made up of graphs and morphisms between them) and a logical formula (monadic second order, to be concrete). The diagram specifies the graphs that take part in the constraint and the formula whether it should be or it should not be found in the host graph. Also, the graphs can be existentialy or universaly quantified. An example is "whenever graph A is found, there must exist a graph B linked to it". Of course, much more complicated combinations can be defined.
Now notice that the left hand side L of a production is in fact a graph constraint or an application condition: It asks for the existence of L in the host graph (the graph the production is going to be applied to). In fact, in MGG, application conditions are a particular case of graph constraints. Notice that in order to apply a production we do not only ask for the existence of the LHS (left hand side, L) but also for the non-existence of the nihilation matrix K (see this post). So in fact we have a positive and a negative application condition.
The first thing we have to prove is that MGG is general enough to handle with positive and negative application conditions as well as with existential and universal quantifiers. Notice that the existence of the LHS of a production is an existential qunatifier, but universals are not considered, at least explicitely. Interestingly, Sec. 7.2 proves that it is not necessary to extend the theory in order to cope with application conditions.
I interpret the following quotation from Plato as saying that we have to be very careful when setting the initial framework: The beginning is the most important part of the work. In some sense this was the initial reason for this blog.
No hay comentarios:
Publicar un comentario